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Abstract

We propose a data-driven machine learning approach to flag bid-rigging cartels
in the Brazilian road maintenance sector. First, we apply a clustering algorithm to
group the tenders based on their attributes. Second, we use the labels created by
the clustering algorithm as a target variable to predict them using a classifier. We
rank the screens according to their relevance to decrease the number of false positive
(detecting cartel when it does not exist) and false negative (not detecting cartel when
it does exist) predictions. Our results shed light on the need to use a range of screens
to recognize the vast profile of strategies practiced by bid-rigging cartels, such as
misleading competitive dynamics, bid combination, and cover bidding behavior. Our
method can improve cartels’ deterrence in different economic sectors, especially when
labeled data are not available. In a controlled environment with a simulated labeled
dataset, the overall average accuracy of the algorithm is 99.33%. In a real-world cartel
case with a labeled dataset, the overall average accuracy is 80.25%. When applied to
the road maintenance unlabeled dataset, our model identified a group containing 273
(31% of the total) suspicious tenders. We conclude by offering a policy prescription
discussion for antitrust authorities.

Keywords: Cartel screens, bid-rigging cartels, unsupervised learning, clustering
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1 Introduction

One of the fundamental issues in Industrial Organization and competition policy is detec-

tion, punishment, and deterrence of collusive behavior. Although it is a consensus that

collusive agreements reduce social welfare, firms have incentives to coordinate their de-

cisions and increase their returns (Levenstein and Suslow 2006). The increasing amount

of electronic databases has been crucial for developing methods that integrate economic

analysis and data-driven approaches to combat such behavior effectively.

In this paper, we propose a Machine Learning (ML) approach to identify bidding pat-

terns consistent with bid-rigging cartels related to road maintenance in Brazil. The analysis

is based on an unlabeled dataset from open tenders between 2012 to 2020, covering 891

tenders from all states and the Capital District of Brazil. We combine ingredients from

unsupervised and supervised ML with statistical and economic analysis. First, we apply

a clustering algorithm (i.e., unsupervised ML) to group the tenders according to their at-

tributes.1 Second, we use the labels created by the clustering algorithm as a target variable

and try to predict these labels using a classifier (i.e., supervised ML). Third, we find out

the most relevant input variables to characterize each cluster and the typical values of

these variables. Fourth, based on the attributes that shape these clusters of tenders, we

identify the ones that present behavior consistent with the existence of bid-rigging cartels.

Thereby, our last step is strongly dependent on previous evidence about the detection of

cartels using statistical screens.

Certain supervised ML methods have been proposed to detect cartels using statistical

screens (Huber and Imhof 2019; Imhof and Wallimann 2021). They depend on two basic

steps: (1) labeled data collection; (2) model parameters estimations. However, labeled

data are frequently unavailable. In general, they are costly and depend on previous in-

1. In ML terminology, the following are synonyms: attributes, features, and explanatory/input variables.
In our context, our attributes are summary statistics we use as statistical screens for detecting potential
collusive patterns in the data. More details on the statistical screens are given in Section 4.1.
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vestigations of the antitrust authority. In addition, even after the cartel investigation, the

pieces of evidence collected may not be conclusive. In the case of the tenders related to

road maintenance activities in Brazil, the available data is insufficient to train supervised

machine learning models. Our ML approach intends to identify collusive patterns without

labeled data.

We use the Gaussian Mixture Clustering Model (GMCM) for the unsupervised ML

stage and the Quadratic Discriminant Analysis (QDA) for the supervised ML stage. The

choice of the GMCM explicitly assumes that the data-generating process of the open ten-

ders attributes comes from a Gaussian mixture. Thus, due to the finiteness property of

the first and second moments of each mode of the Gaussian mixture, the GMCM tends to

group tenders with similar attributes. QDA also assumes that each class follows a Gaussian

distribution and uses the expected value of each input variable as a classification criterion.

The Permutation Importance (PI) technique is used in supervised ML to assess the rela-

tionship between the input variables and the target variable (the labels generated via the

clustering analysis in our unsupervised ML stage). This step in our approach finds out

the most “skilled variables” to separate the clusters into groups of tenders with higher and

lower probabilities of anti-competitive behavior. Furthermore, we generate (additional)

results to support our findings using different combinations of the GMCM and K -means

(unsupervised ML stage) and QDA and logistic regression (supervised ML stage).2

We first validate our approach using Monte Carlo simulations to generate labeled data

in a controlled environment. Then, we provide a similar analysis using the gasoline cartel

labeled dataset due to Silveira et al. (2022) and compare our predictions with their actual

labels. Since the Monte Carlo simulations exercise presents a data-generating process close

to the one used in our model, the model accuracy is around 100%. The overall average

accuracy to detecting the correct label in the gasoline cartel dataset is 80.25%.

Then we investigate an unlabeled dataset of open tenders related to road maintenance

2. The additional estimations and results are available in Appendixes A and B, respectively.
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activities in Brazil. We use six statistical screens in our model. These are grouped into:

(a)“elementary” screens (total number of firms, the total number of bids, the average num-

ber of bids, and the number of firms offering single bids) to detect possible misleading

competitive dynamics; (b)“variance-based” screen (coefficient of variation) to capture bid

combination strategies; (c)“cover bidding” screen (skewness) to identify situations where

the cartel members submit bids in excess of the cartel member designated to win the

contract. Explanatory variables similar to (a), (b), and (c) have been used in works dedi-

cated to studying bid-rigging strategies, either using labeled (Porter and Zona 1999; Tóth

et al. 2014; Huber and Imhof 2019) or unlabeled data (Bajari and Ye 2003; Chassang et

al. 2019; Kawai and Nakabayashi 2022). Our findings suggest the need to use a range of

statistical screens to recognize the vast profile of strategies practiced by bid-rigging cartels,

such as misleading competitive dynamics, bid combination, and cover bidding behavior.

Guided by the patterns found by these statistical screens, our approach indicates a cluster

of bidding data indicative/suspicious of anti-competitive practices in approximately 31% of

public tenders distributed across all Brazilian states. The replication package is available

at the Zenodo repository (Silveira et al. 2023).

In summary, this work combines economic and statistical analysis with a data-driven

framework to investigate collusive market behavior without using labeled datasets. Even

(indirectly) relying on patterns found in previous studies on the strategies of bid-rigging

cartels, this screening approach can be a valuable tool for competition authorities to identify

potential collusion in different markets and circumstances.

The remainder of this paper is organized as follows. Sections 2 – 4 review the litera-

ture, detail the methodology, describe the dataset, and introduce the screens, respectively.

Sections 5 and 6 present and discuss our main findings, respectively. Section 7 concludes.
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2 Literature Review

Harrington (2008) differentiates the literature between structural and behavioral screens

for collusive patterns. Structural screens aim at identifying sectors with a high risk of

anti-competitive practices. Typically, it assesses the structure of industries that would

potentially favor collusive agreements (explicit or tacit), i.e., making it more profitable

and easy to reach and sustain (Abrantes-Metz 2013). In contrast, behavioral screens use

variables such as prices, quantities, and market share to identify patterns that match the

cooperative conduct between firms (Abrantes-Metz and Bajari 2009). They have different

levels of complexity to compare the behavior of colluding firms with those potentially

behaving competitively.

One vein of the empirical literature on behavioral methods uses econometric and coun-

terfactual analysis to detect collusion in auctions. This approach benefits from well-known

episodes of bid-rigging cartels to test (ex post) the properties of the bidding functions.

Ex post analysis may be suitable as a method of testing specific allegations of collusion

and for validation purposes. Porter and Zona (1993, 1999), Pesendorfer (2000), and Clark

et al. (2018) are examples of this strand of literature. Other works use econometric tests

without any previous knowledge (ex ante) or suspicions of bid-rigging cartels (Bajari and

Ye 2003; Baldwin, Marshall, and Richard 1997; Ishii 2009; Abrantes-Metz et al. 2012; Chas-

sang et al. 2019; Kawai and Nakabayashi 2022). There are also simpler behavioral screens

to design effective and preventive tools to fight bid-rigging cartels (Feinstein, Block, and

Nold 1985). They are typically guided by descriptive statistics and exploratory analysis.

Abrantes-Metz et al. (2006) and Imhof, Karagök, and Rutz (2018) are examples of simple

screens used in ex post and ex ante analysis, respectively.

Our paper relates to the recent literature that integrates economics, statistics, and

machine learning methods to detect cartels (Huber and Imhof 2019; Wallimann, Imhof, and

Huber 2022). Supported by the evaluation of ex post cartel cases, these works offer screens

5



based on descriptive statistics capable of adapting to different markets and jurisdictions.

This literature uses labeled data, in which the competition authority has already collected

hard evidence about collusion and revealed information on the strategies adopted by the

cartel members – allowing for supervised learning algorithms to recognize collusive patterns

(Huber, Imhof, and Ishii 2022; Silveira et al. 2022).3

Finally, some readers might wonder whether a purely predictive exercise (such as ours)

could be valuable for Industrial Organization researchers and competition policy. We be-

lieve it does. We draw the reader’s attention to the distinction between causal inference

analysis and “prediction policy” problems (Athey and Imbens 2019; Kleinberg et al. 2015).

In the former, competition policy are based on understanding and constructing counterfac-

tuals, where the differences between scenarios with and without a given policy would guide

the policymakers’ decisions. By contrast, our “predictive” analysis is purely descriptive,

suggestive, and data-driven. If our predictive outputs suggest signs of collusive behav-

ior, this result may encourage competition authorities to investigate firms involved in the

tenders.

3 Methods

We summarize our screening method in four steps. The first step depends on a clustering

algorithm to group the tenders based on a set of relevant attributes. The second step

uses the attributes within a classifier algorithm to predict the labels (generated by the

clustering algorithm). The third step finds out the most relevant features of our method.

The fourth step uses the most relevant features of each cluster to identify the ones in which

the behavior is consistent with the existence of cartels.

In order to run the first step, we implement the GMCM and use the Bayesian Informa-

3. Our work also dialogues with a field of the literature that analyses the behaviors of co-bidding groups
(Conley and Decarolis 2016). Similar to our approach, they do not need labeled data, but different from
ours, they use explicitly co-bidding data for grouping firms that bid together in the same auctions.
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tion Criterion (BIC) to measure the model’s ability to group the data.4 In the second step,

we use the QDA. Note that the GMCM and QDA algorithms share the same assumption

about the distribution of the data (Gaussian mixture) – which increases the consistency of

our approach. We then use in the third step the PI method to find the most important

features to describe the clusters.

Subsection 3.1 reviews the GMCM (McLachlan 1982; Dempster, Laird, and Rubin 1977;

Izenman 2008). Subsection 3.2 presents the QDA classifier (Williams 1982). Subsection

3.3 reviews the PI method (Altmann et al. 2010). Subsection 3.4 provides interesting

simulated examples to elucidate our approach. Finally, in Subsection 3.5, we apply our

method to a labeled database of retail gasoline cartels detected in Brazil without using

the labels offered by Silveira et al. (2022). Using real-world data – such as the Brazilian

gasoline cartels – we can measure the performance of our method by comparing our findings

to the known (actual) labels. In Appendix B.2, we explore different combinations of the

algorithms employed in both the unsupervised and supervised stages. In the Appendix

B.2.1, we replace the GMCM with the K -means clustering algorithm and consider the

logit and QDA in the supervised phase. We provide a comparative predictive analysis in

Appendix B.2.2 to legitimate our choices regarding the combination of GMCM and QDA.

3.1 Gaussian Mixture Clustering Model (GMCM)

Suppose we have a dataset of points X = {x1, · · · , xN} consisting of N observations of a

D-dimensional variable (i.e., XN is a D-vector), which we want to partition in K clusters

(where K << N). The GMCM assumes that the random variable xn is a Gaussian mixture

of K-components. Therefore, we describe the elements of each partition k ∈ {1, · · · , K} of

elements of X by a Gaussian distribution and we model the entire dataset by a mixture of

Gaussian distributions such as

4. The lower the BIC, the better the clustering/labeling of the data and, therefore, the closer the GMCM
will be to the true (and unknown) distribution.
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p(xn) =
K
∑

k=1

πkp(xn|µk,Σk) (1)

where π1, · · · , πK are the mixing probabilities (the unconditional probability of the class k

in the dataset), p (xn|µk,Σk) is the Gaussian likelihood,

p (xn|µk,Σk) =
1

(2π)D/2|Σk|1/2
exp−

1

2
(xn − µk)

TΣ−1
k (xn − µk), (2)

µk is a D-dimensional mean vector, Σk is a D × D covariance matrix, π is the ratio of a

circle’s perimeter to its diameter (a parameter of the standard Gaussian distribution – not

to be confused with πk), |Σk| is the determinant of Σk, and T denotes transpose.

We estimate this model using the Expectation–Maximization (EM) algorithm and the

trick of creating an additional vector of “missing” dummy variables (Dempster, Laird, and

Rubin 1977):

dn = (dn,1, · · · , dn,K), (3)

which indicates the unknown cluster label that xn belongs to. We can use it to augment

each observation and to achieve a vector x̃n = (xn, dn). We assume that dn is a single draw

from a K-class multinomial distribution. Thus,

p (xn|dn) =
K
∏

k=1

p(xn|µk,Σk)
dn,k (4)

is the likelihod of observing xn given dn, and the total log-likelihood of observing X̃ (the ma-

trix composed of x̃n for i = 1, · · · , N) given the parameters (π1, · · · , πK , µ1, · · · , µK ,Σ1, · · · ,ΣK)

is

l(X̃/π1, · · · , πK , µ1, · · · , µK ,Σ1, · · · ,ΣK) =
N
∑

n=1

K
∑

k=1

dn,k log(πkpk(xn|µk,Σk)). (5)
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The E-step computes the expectation of the vector of dummy variables dn by the pos-

terior probability that xn belongs to the cluster K using the Bayes Rule and the available

parameters µk and Σk associated with each cluster k. The M-step uses the expected value

of dn to maximize the log-likelihood. The cluster k ∈ {1, · · · , K} – to which an observation

xn belongs – is the one that presents the largest value of the posterior probability.

The covariance matrix of a Gaussian distribution usually determines the directions and

lengths of the axes of its density contours, admitting the following specifications5:

(a) Full means the components may independently adopt any position and shape.

Therefore, we represent each cluster by a different ellipsoid and we need to estimate the

full covariance matrix for each of them.

(b) Tied means the components have the same shape. Although we may use any type

of ellipsoid to represent the clusters, all of them have the same shape. Therefore, we have

to estimate only one covariance matrix that all of the clusters have to share and the mean

vector is the only attribute that differentiates one of cluster from the other.

(c) Diagonal means that covariance matrices of the components are diagonal matrices

and the contour axes are oriented along the coordinate axes. Thus, we have only to estimate

D parameters for each covariance matrix of each cluster.

(d) Spherical means that the covariance matrices of the components are spherical and

we need to estimate one parameter for each covariance matrix of each cluster. In this case,

the clusters present circular contours.

3.2 Quadratic Discriminant Analysis (QDA)

Suppose we have a dataset of points {(x1, y1), · · · , (xN , yN)} consisting of N observations

of a joint D+1-dimensional variable (x, y). QDA assumes that a point xn belongs to class

5. See Banfield and Raftery (1993), Celeux and Govaert (1995) and Gan, Ma, and Wu (2020) for details.
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k if it maximizes its posterior probability given by the Bayes rule

k = argmax
l

p(xn|µl,Σl)πl, (6)

where we define πl and p(xn|µl,Σl) after Eq. (1). Therefore, we estimate p(xn|µl,Σl) using

the data of each class and πl is the proportion of the class in the sample (Williams 1982).

Note that this is mathematically consistent with the E-step of the GMCM.

3.3 Permutation Importance (PI)

Suppose we have a supervised model such as QDA that depends on D attributes, and we

want to identify the most “predictively important” of them. The idea behind the PI method

is simple. The relevant attributes are the ones that may compromise the prediction ability of

the model when replaced with a shuffled version of them. Therefore, we may summarize this

method using the following steps (Altmann et al. 2010): (i) Randomly mix the data for that

specific attribute while keeping the values of the other attributes constant; (ii) Generate

new predictions based on the randomized values and rate the quality of new predictions;

(iii) Rank the importance of the attributes following the decrease in the quality of new

predictions compared to the original ones. After calculating PI scores for each attribute,

we can rank them with respect to their predictive relevance.6

3.4 Simulated examples

In this subsection, we test our method in a controlled environment. We generate clusters

using a known distribution and we apply our method to this data. GMCM identifies these

6. We are aware that Principal Component Analysis (PCA) is widely used in data science to order the
relevance of screens and dimensionality reduction (Izenman 2008). It is generated as a linear combination of
the original set of variables. Our scope of analysis considers different profiles of collusive bidding behavior,
and the correct interpretation of such dimensionality-reduction technique may lead to a loss of essential
information to identify anti-competitive patterns and generate inaccurate predictions.
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clusters.7 Then, we estimate the QDA using the labels associated with the clusters as the

dependent variable. Then, we evaluate the PI of each variable and evaluate the out-of-

sample accuracy of the classifiers. Table 1 summarizes the outcomes. Column [1] names

the most relevant characteristic of each computational exercise. Column [2] presents the

distribution mixture used to generate the clusters. Column [3] presents the parameters of

this distribution. Column [4] presents the PI of the variables considered in the exercise

using the QDA model. Column [5] presents the out-of-sample accuracy of the classifiers.

Each row of this table explores a different situation. The “baseline” simulation in Figure

1a generates two clusters using a Gaussian mixture. The “larger variance” exercise (Figure

1b) is a minor variation of the baseline case, where the variance of the points in the clusters

is the only difference. In this case, we investigate the variance effect on the variables used

to generate the clusters – in line with the PI criteria – and, also, how it can influence the

accuracy of the classifier. In the “irrelevant variables” and “correlated irrelevant variables”

simulations, we add two variables x3 and x4 that we do not use to generate the cluster.
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(d) Other distribution

Figure 1: Simulated clusters. The “baseline” case also includes “irrelevant variables” and
“correlated irrelevant variables”. The“red” color represents cluster 1, “blue” cluster 2, and
“green” cluster 3. Different markers mean different outputs of the training data of the
classifier. “+” means cluster 1, “o” means cluster 2 and “x” means cluster 3.

The difference between the exercises is that, in the former, these variables are generated

independently from the baseline variables (used to generate the clusters). In the latter case,

7. We use the Full specification for the covariance matrix in the GMCM in order to make clear that our
results do not depend on the known correct specification, which is, for the case of the Gaussian generated
clusters, the Diagonal one.

11



we generate variables that correlate with the baseline variables. In both cases the PI of

variables x3 and x4 is smaller than the PI of variables x1 and x2. However, the PI is much

smaller when generating the additional variables independently, but not so small in the

second case due to the correlation among these variables. The “three clusters” simulation

in Figure 1c presents the situation where the supervised learning is not binary (i.e., it is

multinomial) – the task is to group the data into three (or more) clusters.

[1] [2] [3] [4] [5]

Name Distribution Clusters PI Accuracy

1 2 3 x1 x2 x3 x4

Baseline Gaussian

Mean:

[−1, 5]

Covariance:

diag(4,2.56)

Mean:

[3,−4]

Covariance:

1.21I

2.600± 0.326 2.669± 0.359 100%

Larger

variance
Gaussian

Mean:

[−1, 5]

Covariance:

diag(6.25,4)

Mean:

[3,−4]

Covariance:

4I

1.024± 0.156 1.052± 0.165 96%

Irrelevant

variables
Gaussian

Mean:

[−1, 5]

Covariance:

diag(4,2.56)

Mean:

[3,−4]

Covariance:

1.21I

2.791± 0.393 3.112± 0.393 0.335± 0.075 0.063± 0.029 100%

Correlated

irrelevant

variables

Gaussian

Mean:

[−1, 5]

Covariance:

diag(4,2.56)

Mean:

[3,−4]

Covariance:

1.21I

3.113± 0.375 4.341± 0.495 0.634± 0.105 1.404± 0.164 100%

Three

clusters
Gaussian

Mean:

[−1, 5]

Covariance:

diag(4,2.56)

Mean:

[3,−4]

Covariance:

1.21I

Mean:

[7.5, 7.5]

Covariance:

1I

1.964± 0.253 1.881± 0.186 100%

Other

distribution
Logistic

Location:

[−1, 5]

Scale:

[1.69.1.21]

Location:

[3,−4]

Scale:

[1, 1]

0.875± 0.125 0.844± 0.143 100%

Table 1: Results of the computational exercise using the GMCM clustering in the unsu-
pervised stage.

Notes: The sample size of all clusters is 100. The sample size to test the classifier’s out of sample performance is 25. We use

small samples because in many situations the samples available for this kind of empirical exercise is small. In the “irrelevant

variables” exercise we use the Gaussian distribution with mean [1, 2] and covariance matrix given by 1.69I to generate x3 and

x4. In the “correlated irrelevant variables” simulation, we generate x3 and x4 using [x3, x4]′ = ρ[x1, x2]′ + (1 − ρ)[xp
3
, xp

4
]′,

where we use ρ = 0.25 and [xp
3
, xp

4
] are the values of [x3, x4] in the previous exercise (mean [1, 2] and covariance matrix given

by 1.69I).

The last exercise considers a logistic mixture (Figure 1d). This is equivalent to a situa-

tion where the assumption about the generating process of our random variables is wrong.

Therefore, we demonstrate that our method works correctly in a controlled environment

presenting the required ability to separate the points in clusters and correctly classify them.
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The PI can highlight the relevance of each variable. Although the benchmark models K -

means and logit present stronger modeling assumptions than the GMCM and the QDA

classifiers8, respectively, these results are preserved when GMCM is combined with logit

and when we replace the GMCM with the K -means and combine it with the logit and the

QDA classifiers (see Appendix B.1).

3.5 Labeled database: the gasoline cartels detected in Brazil

In this section, we apply our screening method to the retail gasoline cartels detected in

Brazil (Silveira et al. 2022). The hard evidence collected by the Brazilian antitrust authority

revealed explicit selling price coordination strategies in the following cities: Belo Horizonte,

Braśılia, Caxias do Sul and São Lúıs. In such cartel agreements, the average price typically

increases – as the cartel members seek to raise their profit. Also, we commonly observe

a lower – and persistent – price dispersion.9 Silveira et al. (2022) uses weekly data to

calculate the standard deviation (PriceSd) and the coefficient of variation (CV) of the

gasoline sales price. The explanatory variable PriceSd aims to capture price rigidity. The

CV is calculated as PriceSd divided by the arithmetic mean of the gasoline selling price.

Variance-based screens suggests that we may observe lower PriceSd and CV during cartel

periods. For that reason, we focus on these attributes as screens to evaluate the matching

between the labels generated by our cartel detection methodology and the known (actual)

labels.10

8. GMCM assumes clusters can be elliptical, while K -means considers clusters are spherical. In par-
ticular, we can derive a (soft) form of the K -means clustering approach as a Maximum Likelihood (ML)
estimator with Gaussian distributions with equal and spherical covariance matrices (MacKay, Mac Kay,
et al. 2003). On the other hand, while logistic regression uses a linear decision boundary to separate the
classes, the QDA uses a quadratic one.

9. There is a vast literature that uses variance-based screens to show how collusive behavior affects
price dispersion (Eckert and West 2004; Connor 2005; Abrantes-Metz et al. 2006; Harrington Jr and Chen
2006; Bolotova, Connor, and Miller 2008; Abrantes-Metz 2012; Perdiguero and Jiménez 2020; Silveira
et al. 2021).
10. We acknowledge that cartels can affect other strategic variables rather than PriceSd and CV. To avoid

them being missed, it is worth constructing a screening method based on a set of explanatory variables
that may recognize the (different) strategic profiles cartels use to sustain the agreement.
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Panel (A) Belo Horizonte Obs Mean Std. Dev. Panel (B) Braśılia Obs Mean Std. Dev.
Cartel Period (01/2004–04/2008) Cartel Period (11/2009–11/2015)
PriceSd 220 0.074 0.016 PriceSd 311 0.016 0.016
CV 220 0.034 0.007 CV 311 0.005 0.006
Non-Cartel Period (01/2014–04/2019) Non-Cartel Period (12/2015–04/2019)
PriceSd 276 0.111 0.022 PriceSd 178 0.106 0.049
CV 276 0.031 0.006 CV 178 0.027 0.013

Panel (C) Caxias do Sul Obs Mean Std. Dev. Panel (D) São Lúıs Obs Mean Std. Dev.
Cartel Period (01/2004–07/2007) Cartel Period (01/2007–03/2011)
PriceSd 178 0.028 0.009 PriceSd 213 0.048 0.031
CV 178 0.011 0.004 CV 213 0.019 0.013
Non-Cartel Period (03/2013–04/2019) Non-Cartel Period (10/2014–04/2019)
PriceSd 306 0.068 0.034 PriceSd 236 0.073 0.026
CV 306 0.018 0.008 CV 236 0.021 0.008

Table 2: Descriptive Statistics of the weekly PriceSd and CV in each evaluated city.

The problem considered in our paper is more challenging than the problem considered

in Silveira et al. (2022). In both works, we want to predict whether the dynamics of retail

gasoline prices are consistent with the presence of cartels, i.e., we want to predict y as

“cartel” and “non-cartel” instances. Bearing this in mind, let X be the matrix of attributes

(explanatory variables) associated with the price of gasoline, where each row represents one

sample period and each column a different attribute. Let y be the information on whether

there is an ongoing cartel agreement (or not) in each sample period.11 The supervised

ML method of Silveira et al. (2022) uses the joint distribution of (X, y). Instead, here we

only use the distribution of X to separate the “cartel” from the “non-cartel” instances.

Therefore, our method works well when the distribution of X in periods of “cartel” and

“non-cartel” are different. The key point is to understand how meaningful – and aligned

with economic intuition – these clusters are. Our method indicates the presence of cartels

when, in one or more clusters, we find explanatory variables that behave in accordance

with the pattern typically observed in collusive agreements. For example, the variance-

based screens (PriceSd and CV) can indicate anticompetitive pricing strategies, such as

price fixing agreements. In particular, if we find a specific cluster with low PriceSd and CV

this can serve as evidence of cartel behavior. On the other hand, if the distribution of X

11. In the original data source constructed by Silveira et al. (2022), the information contained in y is
based on the hard evidence collected by the Brazilian competition authority. While information about cartel
versus non-cartel periods may not always be accurate, it still gives us valuable clues on firms’ strategic
behavior over these periods.
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is not different in “cartel” and “non-cartel” situations, the act of clustering is meaningless.

Table 2 presents the descriptive statistics of the explanatory variables used in the labeled

dataset exercise.

(a) Belo Horizonte (b) Braśılia

(c) Caxias do Sul (d) São Lúıs

Figure 2: The histogram of weekly PriceSd and CV for non-cartel and cartel observations.

The histograms of the PriceSd and CV illustrated in Figure 2 give a clue of the cartels

detected more accurately by our method. Comparing the observations labeled as non-cartel

and cartel, respectively, notice that the distribution of the prices’ standard deviation and
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coefficient of variation in Braśılia is different. The PriceSd in São Lúıs also shows a clear

and visible different pattern during the cartel and non-cartel periods, respectively. The

differences are less clear in Belo Horizonte and Caxias do Sul, especially for CV.

In the sequel, we show how the clustering algorithm splits the groups of data. The

GMCM combined with QDA method shows a better performance to identify cartels in

gasoline retail in Braśılia and São Lúıs. We use the Bayesian information criterion (BIC)

as the metric for fitting the best GMCM. To avoid overfitting, we penalize models with a

large number of clusters.12

(a) Belo Horizonte (b) Braśılia

(c) Caxias do Sul (d) São Lúıs

Figure 3: BIC analysis to group the data based on the dynamics of PriceSd and CV.

However, as illustrated by Figure 3, this is not always an unambiguous criterion (Rokach

and Maimon 2005). When there is a small difference in the BIC, whether for choosing

the number of clusters or determining the covariance matrix, we favor parsimony. We

use the “full” covariance definition in Braśılia (Figure 3b) and São Lúıs (Figure 3d), and

the “tied” covariance type in Belo Horizonte (Figure 3a) and Caxias do Sul (Figure 3c).

These definitions are parsimonious and preferable in the sense they are almost as lower

12. We evaluate the gradient of the score curve by the BIC: if two consecutive points have the same value,
their gradient will be zero. If they have different values, their gradient becomes negative (positive) if the
second point has a lower (upper) value. Its magnitude tells us how different the two values are.

16



as the lowest BIC, and they nicely shape each cluster, improving its visualization and

interpretability.

It is worth mentioning that the GMCM algorithm does not use the actual labels of

the gasoline cartel data. The clustering step – where we adopt the GMCM (unsupervised

ML) – labels the gasoline cartel data solely based on the two explanatory variables we

use: PriceSd and CV. Then, we define the label generated by the GMCM as our target

variable (y) to fit the QDA algorithm (supervised ML). This procedure allows us to use

the PI technique to measure how much the GMCM labeling (and clustering) depends on

each explanatory variable.

Table 3 presents the results of the PI technique when applied to the classification pro-

vided by the QDA algorithm (supervised ML). In the second column of each panel, we show

the estimated increase in prediction error when we replace each statistical screen with its

random shuffling counterpart. The drop in the model accuracy captures how much the

identification of the labels (cartel versus non-cartel) depends on each statistical screen.

Panel (A) Belo Horizonte Panel (B) Braśılia

Screen Estimated Increase in Prediction Error Screen Estimated Increase in Prediction Error
PriceSd 0.4000 ± 0.0301 PriceSd 0.4027 ± 0.0315
CV 0.0711 ± 0.0201 CV 0.4014 ± 0.0375

Panel (C) Caxias do Sul Panel (D) São Lúıs

Screen Estimated Increase in Prediction Error Screen Estimated Increase in Prediction Error
PriceSd 0.3918 ± 0.0419 PriceSd 0.4978 ± 0.0525
CV 0.1671 ± 0.0834 CV 0.4963 ± 0.0629

Table 3: Estimated Increase in Prediction Error for the statistical screens used in the
gasoline cartels.

In Braśılia (Panel B) and São Lúıs (Panel D), we see a balance in the importance of

PriceSd and CV. This is not observed in Belo Horizonte (Panel A) and Caxias do Sul (Panel

C). Thus, based on this table, we may suspect (ex ante) that the accuracy of the predictions

in Belo Horizonte and Caxias do Sul are not as good as the ones found in Braśılia and São

Lúıs – since, in the former, the forecasts are primarily based on PriceSd.
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(a) Belo Horizonte
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(b) Braśılia
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(c) Caxias do Sul
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(d) São Lúıs

Figure 4: GMCM clustering based on PriceSd and CV.

Considering that we propose an exercise based on a labeled dataset, we may evaluate

our findings by comparing our predictions with the actual labels. It allows us to discuss

the predictive power of our model in the light of the false positive versus false negative

rates, which is crucial for competition authorities – and would not be possible to assess

with unlabeled datasets. A false positive (negative) corresponds to the Type I (II) error.

There is a well-known trade-off between Type I and Type II errors. Positive outcomes
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typically require proactive actions. Thus, when there is Type I errors, the (wrong) action

taken by the competition agency may compromise its reputation and cause budget waste

(Huber and Imhof 2019). Bearing this in mind, we see through Figures 4a–4d that in the

cities of Braśılia and São Lúıs, the occurrence of type I error is quite low. However, it is

more frequent in the cities of Belo Horizonte and Caxias do Sul.

Panel (A) Belo Horizonte Panel (B) Braśılia
Precision Recall f1-score Precision Recall f1-score

non-cartel 0.84 0.50 0.63 non-cartel 0.86 0.89 0.88
cartel 0.58 0.88 0.70 cartel 0.94 0.92 0.93

accuracy 0.67 accuracy 0.91

Panel (C) Caxias do Sul Panel (D) São Lúıs
Precision Recall f1-score Precision Recall f1-score

non-cartel 1.00 0.44 0.61 non-cartel 0.99 0.99 0.99
cartel 0.51 1.00 0.67 cartel 0.99 0.99 0.99

accuracy 0.64 accuracy 0.99

Table 4: The performance of the GMCM in each evaluated city

In Table 4, we summarize the performance of GMCM in each city evaluated. Precision

quantifies the number of positive class (cartel) predictions that belong to the actual positive

class. Thus, high Precision is associated with a low incidence of Type I errors. On the

other hand, Recall measures the number of positive class predictions made up of all positive

observations in the dataset. A high Recall is associated with a low incidence of Type II

errors. To achieve maximal Precision (no false positives) and Recall (no false negatives)

there needs to be an absence of type I and II errors, respectively. The f1-score provides

a single score that balances (via the harmonic mean) the concerns of both Precision and

Recall in the same measure. We use the classification accuracy score to measure the ability

of the GMCM to identify the cartel and non-cartel instances. The classification accuracy is

given by the proportion of correct predictions – true positives and true negatives - among

the total sample. The overall average classification accuracy considering all four cities is

80.25

Overall, the analysis of the gasoline cartels detected in Brazil contributes to the litera-

ture based on variance-based screens, telling us that prices typically have a lower standard
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deviation and, potentially, a lower coefficient of variation during cartels based on price

coordination agreements. Regarding the accuracy of our methodology, we found a very

high performance in the case of Braśılia and São Lúıs, suggesting that the distribution of

the explanatory variables is consistent with the presence or not of cartels. In the case of

Belo Horizonte and Caxias do Sul, we have still found an acceptable performance of our

approach. However, we have observed the unfortunate situation of a higher incidence of

false positives.13

4 Data Source and Outline

From now on, our objective is to apply our data-driven ML approach introduced in Section

3 to detect bidding patterns consistent with bid-rigging cartels related to road maintenance

services in Brazil. This empirical exercise is completely different from those presented in

Sections 3.4 and 3.5. In Section 3.4, we evaluate our approach using simulated data we

generate by assuming we know its “real” distribution. Differently, Section 3.5 explores our

methods on the gasoline cartels detected in Brazil. The datasets used in those analyses

have labels – indicating the situations where cartels occurred. Notice that we do not use

their actual labels to estimate the ML models. More precisely, we compare the actual labels

with those generated (predicted) with our ML method to measure the performance of our

approach. In summary, sections 3.4 and 3.5 serve for the sake of didactics and testing the

validity of our ML method.

The data we explore in this section does not have labels. Thus, it illustrates the typical

situation where our approach may be useful. The dataset comes from the Brazilian Federal

13. In Appendixes B.2, we offer additional analysis (and results) considering other benchmark models,
such as the logit classifier and the K -means clustering algorithm, respectively. These models are less
flexible: the K -means specify equal (spherical) covariance matrices to shape each cluster, and the logit
classifier relies on a generalized linear model. These more restrictive specifications may explain their
inferior performance when dealing with real-world data (Appendix B.2.1). The additional findings using
the (labeled) Brazilian gasoline cartels datasets presented in Appendix B.2.2 show how our approach may
achieve low false positive rates.
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Public Procurement portal (Data Warehouse Comprasnet). We evaluate 891 unlabeled

open tenders from 27 states, including the Capital District of Brazil, from 2012 through

2020.14

Section 4.1 presents the statistical screens derived from the bids’ distribution in each

tender. Section 4.2 summarizes the descriptive statistics for each variable we use to identify

potential collusive behavior in the public procurement auction data.

4.1 Statistical Screens

In this section, we introduce statistical screens based on the distribution of bids in each

tender. Each input variable we use as screen captures a different aspect of the bidding

distribution and potentially allows us to accommodate distinct strategies related to bid

manipulation.

Section 4.1.1 presents the screens derived from the discussion in Bhargava, Jenamani,

and Zhong (2005) and Tóth et al. (2014), which call attention to two distinct behaviors

of deliberately losing firms with a decorative role (so-called “superfluous bidders”) in the

procurement. The first refers to the high number of active firms in the market who only

submit one initial bid in the same tender and then drop out. It is one of the tactics used

by the cartel to simulate a competitive dynamic insofar as a significant number of firms

participate in the same procurement but offer only a single bid. The second behavior refers

to the case in which cartel members artificially bid on open tenders, sometimes discouraging

rivals with tight and continuous undercuts and, later on, dropping out.

Section 4.1.2 presents the economic intuition of the variance-based and cover bidding

screens. As shown by Huber and Imhof (2019), the coefficient of variation (variance-based)

screen may capture bid combination strategies within the same tender. The skewness

statistics can work as a “cover bidding” screen. It allows us to potentially identify situations

14. As our data is not labeled, we cannot assume complete (all-inclusive) bid-rigging cartels.
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where the cartel members submit bids in excess of the cartel member designated to win

the contract.

4.1.1 Elementary Screens

The first statistic we consider as an elementary screen is TotalSingleBidst, which is the

total number of bidders per tender t who placed only a single bid – that is, who only

submitted the preliminary sealed bid without actively engaging in the open bidding phase.

The statistical screen TotalSingleBidst is an adaptation of the formula by Tóth et al. (2014)

meant to keep track of the so-called bid suppression, whereby most bidding ring members

abstain from bidding against the member designated to be the winner. In other words,

tenders with high rates for the screen TotalSingleBidst could potentially indicate collusion

strategies that emulate competitive dynamics by populating the tender with the so-called

fictitious, superfluous, or ”frequent loser” bidders.15 TotalSingleBidst considers whether a

firm may be willing enough to submit the initial sealed bid, thus inflating the number of

bidders, and yet abstains from submitting further bids. Let SingleBidit be given by:

SingleBidit =











1 if the firm i offered a single bid in tender t

0 otherwise

(7)

We can calculate TotalSingleBidst as follows:

TotalSingleBidst =
∑

i

SingleBidit. (8)

Other indicators of superfluous bidders are TotalFirmst, TotalBidst, and AverageBidst.

The first corresponds to the number of all firms competing in the same procurement. A low

number of bidders in a tender can facilitate coordination between them (or could indicate

15. See Secretariat of Economic Law (2009) for hard evidence of this fake bids in bid-rigging cartels in
Brazil.
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bid “suppression”). However, tenders with many firms do not necessarily guarantee a

competitive environment. The second statistic we use as an elementary screen is the total

number of bids offered by each company participating in the open tender. Both the tenders

with a high frequency of single bids and those containing a relatively high number of bids

placed by the same company may indicate an anomaly – also arising from the strategy

of (artificially) emulating competitive bidding behavior. We calculate the AverageBidst

screen as follows:

AverageBidst =
TotalBidst
TotalFirmst

(9)

That is, AverageBidst is a ratio of the total number of bids to the total number of com-

panies participating in the same tender. This potentially captures other patterns related

to strategies used by bid-rigging cartels to emulate competitive behavior.

4.1.2 Variance-based and cover bidding screens

Coordinated actions in bid-rigging cartels may increase the mean – as the members of the

collusive agreement submit higher bids to raise profits – and affect the dispersion of bids

in a given tender. Thus, we consider as a screen the bids’ coefficient of variation, i.e., the

ratio of the bids’ standard deviation to their mean:

CVt =
σt

µt

. (10)

The average bid in a tender t (µt) necessarily increases as cartel participants submit

higher bids to increase their profit. Therefore, the evolution of σt determines this effect

on CVt. The scale-invariant property of CVt is a desirable attribute of “variance-based”

screens to detect bid-rigging cartels – as it allows comparison of bidding behavior in tenders

where contract values vary substantially (Feinstein, Block, and Nold 1985; Abrantes-Metz
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et al. 2006; Imhof, Karagök, and Rutz 2018). Imhof (2019) suggests that σt decreases as a

result of the communication across cartelized companies. Low values for the coefficient of

variation may indicate a bid-rigging cartel.

The difference between the losing bids and the difference between the lowest (winning)

bid and the second-lowest bid can suggest a “cover bidding” strategy. Bid-rigging cartels

that use cover bidding mechanisms may act as follows. Cartel members not selected to win

the contract offer distinguishing higher prices than the designated winner. This strategy

can both ensure that the contract is awarded to the member designated by the cartel and

suggest that the winning bid is a result of competition between bidders (Pesendorfer 2000).

Assuming that the difference between the first and second lowest bids is higher than the

difference between the losing bids, Huber and Imhof (2019) calculate the following skewness

statistic for the collection of all bids (bt) in each tender t to validate their argument:

Skewness (bt) =
n

(n− 1) (n− 2)

n
∑

i=1

(bit − µt

σt

)3

. (11)

If the differences in “cover bidding” are lower and the difference between the first

and second lowest bids are significant, skewness will be more outstanding. Therefore, the

“cover bidding” strategy adopted by bid-rigging cartels may affect the distribution of the

bids within the same tender t – transforming it into a negatively skewed distribution.

4.2 Summary Statistics

This section summarizes the statistical behavior of each screen and illustrates their descrip-

tive statistics and distributions.

Table 5 details the descriptive statistics for each screen presented in Section 4.1. Figure

5 illustrates the dynamics observed by each screen. Figures 5a, 5b, and 5c show the total

number of firms, bids, and the average number of bids between 2012 and 2020, respectively.

We observe, over the years, an increase in the total number of firms and the total number
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Screen Obs Mean Std. Dev. Min Max

TotalFirmst 891 22.23 18.15 4 156
TotalBidst 891 161.05 165.86 4 1524
AverageBidst 891 7.47 4.46 1 36.1
TotalSingleBidst 891 8.16 6.38 0 60
CVt 891 0.38 0.59 0.00 4.80
Skewness(bt) 891 0.89 1.59 -3.42 6.28

Table 5: Summary of the Descriptive Statistics

of bids offered in the same tender. AverageBidst, on average, shows a homogeneous behavior

across the sample. Figure 5d shows an increase in the number of firms offering a single bid

on the same purchase, especially between 2018 and 2019. Figure 5e reveals a significant

number of tenders with a low CVt (closer to zero). In Figure 5f, we notice a consistent

number of tenders displaying negative skewness over the years 2012 and 2020.
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Figure 5: Statistical Screens

5 Results

All the screens considered in our analysis underwent a normalization procedure. This is a

well-established and necessary step in clustering tasks when the data scale varies widely
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because their range can affect the results (Revelle 1979). We standardize the screens

by removing the mean and scaling to unit variance, both of them taken from the whole

sample.16

Figure 6 illustrates how we choose the optimal number of clusters. The BIC reaches

its minimum value when the number of components is four. Then, the BIC takes slightly

higher values when the number of clusters is five and six, respectively. In short, this plot

suggests dividing the tenders into four groups of tenders would be sufficiently informative.

Figure 6: BIC analysis

While Table 6 summarizes the descriptive statistics of the screens for the tenders

grouped in each of the four clusters generated by the GMCM, Figure 7 complements this

analysis by showing the boxplots of the statistical screens of each cluster.

These results suggest that the statistical screens in each cluster present a particular

pattern. We start assessing the difference among these clusters. In the sequel, we show

that these differences are statistically significant.

Cluster 0 contains more tenders. It combines a relatively high average number of

TotalFirmst and positive Skewness(bt). Cluster 1 comprises the higher average values

for CVt and Skewness (bt). Cluster 2 contains relatively few tenders. For TotalFirmst,

TotalBidst, and TotalSingleBidst, the significantly higher average number in cluster 2 stands

out. Cluster 3 holds the higher average for the screen AverageBidst, and is – quite explicitly

16. We implement our computation in Python 3.9. For the details of normalization, see Python docu-
mentations for sklearn.preprocessing.StandardScaler and sklearn.preprocessing.normalize.

26

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.normalize.html


– also a locus of a joint incidence of low CVt and negative Skewness(bt).

Among the clusters we have discussed so far, the patterns of CVt and Skewness(bt)

observed in cluster 3 matches the features consistently observed in the bid-rigging cartels

(Huber and Imhof 2019). In addition, the higher average for the screen AverageBidst, in

this context, suggests that a small number of firms per tender may submit, in relative

terms, a significant number of bids to convey a false impression of high competition.

Mean Std. Dev. Min Max Mean Sdt. Dev. Min Max

cluster 0 cluster 1
TotalFirmst 24.74 7.83 4 46 TotalFirmst 14.24 6.04 4 32
TotalBidst 132.24 65.67 19 298 TotalBidst 99.38 67.70 4 361
AverageBidst 5.23 1.68 1.67 9.83 AverageBidst 7.03 4.62 1 36
TotalSingleBidst 9.67 3.84 1 24 TotalSingleBidst 6.13 3.33 1 18
CVt 0.16 0.06 0.01 0.36 CVt 0.98 0.90 0.005 4.80
Skewness(bt) 0.38 1.24 -3.42 4.99 Skewness(bt) 2.64 1.03 0.27 5.26

cluster 2 cluster 3
TotalFirmst 60.49 35.09 4 156 TotalFirmst 14.72 7.26 4 39
TotalBidst 488.99 346.99 48 1524 TotalBidst 147.03 93.10 8 452
AverageBidst 9.07 6.66 1.60 34.89 AverageBidst 9.84 4.30 1.60 23.17
TotalSingleBidst 19.46 12.04 1 60 TotalSingleBidst 4.81 2.92 0 14
CVt 0.34 0.26 0.05 1.12 CVt 0.13 0.06 0.00 0.31
Skewness(bt) 1.35 2.07 -2.43 6.28 Skewness(bt) -0.16 0.56 -1.78 1.42

Table 6: Descriptive Statistics by each clusters. We have 304 observations (obs) in Cluster
0; 232 obs in Cluster 1; 82 obs in Cluster 2; and 273 obs in Cluster 3.

Although cluster 2 contains the public tenders with the higher incidence (on average)

of single bids (TotalSingleBidst) and the total number of bids (TotalBidst), it is not trivial

to associate it with a clear – competitive or collusive – behavioral pattern. This is justified

by the average value observed for the other screens, such as CVt and Skewness(bt). While

the expected behavior for potential bid-rigging cartels would result in a combination of

low coefficient of variation and negative skewness, comparatively, cluster 2 shows us the

opposite. Cluster 0 and Cluster 1 do not present a combination of low CVt and negative

Skewness(bt).

An issue that arises is if the input variables we use as screens show similar values

(patterns) in each of the clusters identified by GMCM. We may use the one-way “analysis

of variance” (ANOVA) to compare whether the means of two samples are significantly
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different. Through this analysis, we can assess similarities between the clusters. The null

hypothesis of the one-way ANOVA is that all the clusters come from the same distribution

(with the same mean values). If the statistical screens’ means from each cluster come from

populations with the same mean values, the observed variance between the clusters’ means

tends to be smaller. Variations in the screens’ average behavior in each cluster imply that

samples come from populations with different average values.17 This evaluation is valuable

as it helps to distinguish the patterns captured by the statistical screens’ within each group

of tender.
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Figure 7: Boxplot by cluster for each screen

Table 7 informs that, for the same screen, at least two clusters are different. However,

as we have a total of 4 clusters, it is relevant to determine which ones differ from each other

using a posthoc test. We apply Tukey’s test to complement the heterogeneity analysis

between the groups.18

17. In the machine learning literature related to cluster analysis, the one-way ANOVA has been established
as an alternative strategy for the selection of attributes (Elssied, Ibrahim, and Osman 2014; Palaniappan,
Sundaraj, and Sundaraj 2014).
18. We follow Kotsiantis, Pierrakeas, and Pintelas (2004), who argue that this is the appropriate analytical

procedure to use together with the one-way ANOVA.
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Screen Adj R-squared F-Statistics Prob>F

TotalFirmst 0.5173 318.93 < 0.0001
TotalBidst 0.4067 204.39 < 0.0001
AverageBidst 0.1840 67.88 < 0.0001
TotalSingleBidst 0.4164 212.71 < 0.0001
CVt 0.3724 177.05 < 0.0001
Skewness(bt) 0.4907 286.88 < 0.0001

Table 7: One-way ANOVA

Table 8 shows that, for the following screens, there is no statistically significant dif-

ference between some clusters: TotalFirmst (clusters 3 vs 1), TotalBidst (clusters 3 vs 0),

AverageBidsT (clusters 3 vs 2) and CVt (clusters 3 vs 0).

TotalFirmst TotalSingleBidst
clusters Std. Err. t- statistics P > t clusters Std. Err. t- statistics P > t

1 vs 0 0.06 -9.55 <0.0001 1 vs 0 0.07 -8.31 <0.0001
2 vs 0 0.09 22.78 <0.0001 2 vs 0 0.10 16.14 <0.0001
3 vs 0 0.06 -9.53 <0.0001 3 vs 0 0.06 -11.94 <0.0001
2 vs 1 0.09 28.55 <0.0001 2 vs 1 0.10 21.27 <0.0001
3 vs 1 0.06 0.42 0.975 3 vs 1 0.07 -3.03 0.013
3 vs 2 0.09 -28.82 <0.0001 3 vs 2 0.10 -23.85 <0.0001

TotalBidst CVt

clusters Std. Err. t- statistics P > t clusters Std. Err. t- statistics P > t

1 vs 0 0.07 -2.95 0.017 1 vs 0 0.07 20.18 <0.0001
2 vs 0 0.10 22.44 <0.0001 2 vs 0 0.10 3.13 0.01
3 vs 0 0.06 1.39 0.507 3 vs 0 0.07 -0.76 0.871
2 vs 1 0.10 23.74 <0.0001 2 vs 1 0.10 -10.66 <0.0001
3 vs 1 0.07 4.18 <0.0001 3 vs 1 0.07 -20.42 <0.0001
3 vs 2 0.10 -21.26 <0.0001 3 vs 2 0.10 -3.60 0.002

AverageBidst Skewness(bt)
clusters Std. Err. t- statistics P > t clusters Std. Err. t- statistics P > t

1 vs 0 0.08 5.11 <0.0001 1 vs 0 0.06 22.84 <0.0001
2 vs 0 0.11 7.66 <0.0001 2 vs 0 0.09 6.88 <0.0001
3 vs 0 0.08 13.7 <0.0001 3 vs 0 0.06 -5.72 <0.0001
2 vs 1 0.12 3.95 <0.0001 2 vs 1 0.09 -8.83 <0.0001
3 vs 1 0.08 7.8 <0.0001 3 vs 1 0.06 -27.64 <0.0001
3 vs 2 0.11 1.51 0.433 3 vs 2 0.09 -10.59 <0.0001

Table 8: Tukey’s Test

Now, using the vector of clusters’ labels (provided by the GMCM) as the dependent

variable and the statistical screens (used to build the clusters) as independent variables,

we run the QDA and evaluate the PI of each screen associated with this model.
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Table 9 presents the PI of each screen summarizing its contribution to the proper

mapping of clusters. The most important statistical screens for the data clustering are

those based on the detection of “superfluous bidders”.

Screen Estimated Increase in Prediction Error

TotalFirmst 0.5179 ± 0.0385
TotalBidst 0.4836 ± 0.0373
AverageBidst 0.3806 ± 0.0267
Skewness(bt) 0.2373 ± 0.0322
CVt 0.2343 ± 0.0322
TotalSingleBidst 0.1299 ± 0.0296

Table 9: Permutation Importance

The use of the PI technique can increase the competition authority’s likelihood of de-

tecting cartels via joint analysis of the screens. In light of what the PI technique reveals, a

behavioral pattern associated with the performance of a bid-rigging cartel might be the fol-

lowing: few firms in the same tendering process could be simulating a competitive dynamic

by increasing the number of bids. Consequently, it would shift up the average bids per

firm. In addition, remember that tenders with few firms can ease communication between

them. It can lead to a bidding pattern with low CV and a negative skewness – which may

reflect the cartels’ bid-rigging strategies.

In other words, the regulator can optimize its screening strategy (with a fixed budget

constraint) by jointly considering the variance-based and cover bidding screens. Recall that

cluster 3 combines the occurrence of low CV in tenders with a relatively low number of firms

and negative skewness. We must remember that the patterns found with the statistical

screens we used in this study match the standard bid-rigging behavior recognized by these

same statistical screens in previous works (Porter and Zona 1999; Abrantes-Metz et al. 2006;

Tóth et al. 2014; Huber and Imhof 2019; Wallimann, Imhof, and Huber 2022).19

19. It is worth mentioning that cartel screens applied to retail markets – such as the gasoline cartels in
Brazil we discussed in Section 3.5 – also use the low price coefficient of variation as a standard “variance-
based” screen to detect (potential) price-fixing agreements.
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Figure 8 shows, based on cluster 3, the suspected cartelized tendering distributed across

all Brazilian states.

Figure 8: The black bars represent the tenders in cluster 3 by each Brazilian state. The
bars in gray aggregate all tenders of all clusters.

Of this set, the states of Amazonas (AM), Goiás (GO), Minas Gerais (MG), Mato

Grosso do Sul (MS), Mato Grosso (MT), Paraná (PR), Rio de Janeiro (RJ), Roraima

(RO), and Tocantins (TO) stand out. Paraná, Amazonas, and Roraima are the states with

the highest proportion of suspected cases. Therefore, the proposed method suggests that

the competition authority needs to pay more attention to these public procurements.

6 Discussions

We discuss in this section the ideas that drive our work, the results we have found, the

limitations, and possible improvements. We split this section as follows. In Subsection 6.1,

we review our methodological choices. In Subsection 6.2, we highlight the limitations of

our data-driven approach.
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6.1 Our Methodological Choices

Our ex ante analysis depends on four different choices. First, we choose screens that may

indicate collusive strategic profiles. To seek bidding patterns consistent with bid-rigging

cartels related to road maintenance services in Brazil, we use statistical screens previously

adopted in empirical studies based on behavioral screens as input variables (attributes)

in our proposed method. The combination of “elementary”, “variance-based” and “cover

bidding” screens may help competition authority to recognize (ex-ante) the vast profile

of strategies practiced by bid-rigging cartels. Second, we need to select the clustering

model to group the observations. In theory, we can use any clustering algorithm. In this

matter, we choose the GMCM due to its simplicity and flexibility regarding (technical)

attributes and specifications.20 Third, we need to choose a supervised classifier to replicate

the labels of the clustering algorithm. In this step, we select the QDA due to its flexibility

and simplicity. Conveniently, it shares the same assumptions as the GMCM.21 Fourth,

to identify the most important statistical screens, we choose PI as an evaluation criterion

because it is the “benchmark” in interpretable machine learning approaches (Molnar 2020).

6.2 Limitations

The variables’ statistical properties may impose some limitations on our method. More

precisely, when the distribution of the majority of the selected explanatory variables does

not allow us to distinguish between collusive and competitive market strategies, we may

end up with clusters with ambiguous patterns. This can be a source of inaccurate predic-

tions, harming competition authorities’ reputation. One way to overcome this drawback

is to use economic analysis and intuition to choose screens that would present different

20. In Appendix B, we offer a comparative analysis with the K -means, one of the most widely used
clustering algorithms that rely on less flexible attributes and specifications than GMCM.
21. Also in Appendix B, we make a comparison with logit, a widespread model. In ideal cases, the QDA

and logit models behave similarly. In other specific situations, logit loses attractiveness, as its decision
frontier is linear, while QDA is quadratic.
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distributions in the presence of cartels. However, the choice of our statistical screens and

their interpretation is guided by results (and patterns) widely discussed in previous works

that sought empirical evidence on cartel performance strategies – whether in retail markets

or public tenders. Thus, the need for (empirical or economic-based) evidence to choose the

statistical screens also bounds our work.

7 Conclusion

We design a data-driven method to detect collusive behavior in situations where we do not

have labeled data. The replication package is available at the Zenodo repository (Silveira

et al. 2023). Aware that antitrust practitioners and competition authorities must often

anticipate the cartels’ movements, our unsupervised ML method – relying on the cartel

identification ability of previously studied statistical screens – can provide an additional

tool for the detection and prosecution of cartels.
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Detecting Collusive Bidding in Public Procurement. With Examples from Hungary.”

Corruption Research Center Budapest: Working Paper Series CRCB-WP/2014:02.

Wallimann, Hannes, David Imhof, and Martin Huber. 2022. “A Machine Learning Approach

for Flagging Incomplete Bid-rigging Cartels.” Computational Economics (forthcom-

ing), https://doi.org/10.1007/s10614-022-10315-w.

Williams, Byron K. 1982. “A Simple Demonstration of the Relationship between Classifi-

cation and Canonical Variates Analysis.” The American Statistician 36 (4): 363–365.

39

https://doi.org/10.5281/zenodo.7111547
https://doi.org/10.1007/s10614-022-10315-w


Appendix A Benchmark Models

In this appendix, we review the K -means (unsupervised) and logit (supervised) algorithms.

It allows us to compare our main findings with benchmark models used in unsupervised and

supervised frameworks. These models rely on less flexible assumptions than the respective

models used in the main text, namely GMCM – used in the unsupervised stage –, and

QDA – used in the supervised stage –, as we describe below.

Subsection A.1 K -means

K -means clustering is a method that aims at partitioning n observations into K (≤ n) clus-

ters, assuming each observation belongs to the cluster with the nearest mean (MacQueen

1967; Lloyd 1982; Gnanadesikan 2011). In order to build the set of clusters C, we have to

run the algorithm due to Lloyds presented in Figure A.1:

procedure Lloyds

Choose K points to the initial clusters
while C changes do

for all x ∈ X do
Find cluster Ck with center ck that is the closest to x (using the distance)

Add x to Ck

end for
for all Cluster k do

Recalculate ck as the average of all the members of Ck

end for
end while

end procedure

Figure A.1: The Lloyds algorithm.

Although it is not explicitly formulated, it is worth mentioning that the K -means

algorithm favors equal spherical covariance matrices for each cluster. To determine the

optimal number of clusters K necessary to run the K-means algorithm, we may use the

Silhouette score (Izenman 2008). It allows us to measure the goodness of fit for the K -means

clustering algorithm. For a particular clustering, CK , of a dataset containing K clusters,
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the silhouette score of the ith item is calculated using the mean intra-cluster distance (ai)

and the mean nearest-cluster distance (bi):

siK =
bi − ai

max{ai, bi}
,

so that −1 ≤ siK ≤ 1. Values close to 1 indicate that the ith item is well-clustered, and

values around -1 indicate poor clustering.

Subsection A.2 Logit

Suppose that yi, i = 1, · · · , n comes from a sample of n independent Bernoulli variables.

The logit model assumes that the probability P (yi = 1) subjected to a vector of explanatory

variables xi is given by a generalized linear model as in:

P (yi = 1) =
exiβ

1 + exiβ
.

In order to estimate the vector β of coefficients of this model, we have to maximize the

log-likelihood function expressed by

L(β) =
n

∑

i=1

[

yi xi β − log (1 + exi β)
]

. (A.1)

Appendix B Additional results using combinations of

the benchmark models

We present additional results exploring different combinations of the models employed

in the unsupervised (GMCM and K -means) and supervised (logit and QDA) stages. In

the following sections, namely Subsections B.1, B.2, and B.3, we revisit respectively the

simulated data generated in Subsection 3.4, the gasoline cartel data explored in Subsection
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3.5, and the road maintenance data considered in Section 5. Concisely, we provide a

comparative analysis of the proposed models to complement the main discussion of the

paper.

Subsection B.1 Simulated database

We start this section by exploring our approach using the data generated in Section 3.4

and replacing the QDA model with the logit model. The accuracy obtained from the

combination of GMCM with logit in the simulated data exercise is the same obtained by

the GMCM with QDA. The only difference noted is the Permutation Importance weights

in the simulated scenario with three clusters. Table B.1 informs us that, although with a

different magnitude, qualitatively, the results obtained via GMCM and logit converge to

those generated with GMCM and QDA (see Table 1).

[1] [2] [3] [4] [5]

Name Distribution Clusters PI Accuracy

1 2 3 x1 x2

Three

clusters
Gaussian

Mean:

[−1, 5]

Covariance:

diag(4,2.56)

Mean:

[3,−4]

Covariance:

1.21I

Mean:

[7.5, 7.5]

Covariance:

1I

3.009± 0.374 2.910± 0.271 100%

Table B.1: GMCM clustering (unsupervised stage) and logit (supervised stage).

We now assess the K -means in a controlled environment. We generate clusters using the

same distributions and specifications used in the GMCM’s evaluation. Then, we estimate

the logit and QDA using the labels associated with the clusters as the dependent variable. In

sequence, we evaluate the PI of each variable and evaluate the out-of-sample accuracy of the

classifier. Table B.2 summarizes the outcomes. Notice in column [4] that the magnitude of

the PI varies in relation to the GMCM (see Table 1). However, the accuracy of the K -means

in the first stage is the same as found in the GMCM, qualitatively preserving the results.

Therefore, since the data generating process is very well-behaved in controlled environments

where we use simulated data, we may conclude that, even with simpler models, we have
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found similar results.

[1] [2] [3] [4] [5]

Name Distribution Clusters PI Accuracy

1 2 3 x1 x2 x3 x4

Baseline Gaussian

Mean:

[−1, 5]

Covariance:

diag(4,2.56)

Mean:

[3,−4]

Covariance:

1.21I

925.909± 116.669 954.843± 129.114 100%

Larger

variance
Gaussian

Mean:

[−1, 5]

Covariance:

diag(6.25,4)

Mean:

[3,−4]

Covariance:

4I

963.627± 152.356 992.467± 159.154 96%

Irrelevant

variables
Gaussian

Mean:

[−1, 5]

Covariance:

diag(4,2.56)

Mean:

[3,−4]

Covariance:

1.21I

925.926± 116.691 948.993± 130.806 1.305± 1.650 2.666± 1.934 100%

Correlated

irrelevant

variables

Gaussian

Mean:

[−1, 5]

Covariance:

diag(4,2.56)

Mean:

[3,−4]

Covariance:

1.21I

927.779± 116.872 1256.66± 162.138 80.201± 15.432 242.255± 31.888 100%

Three

clusters
Gaussian

Mean:

[−1, 5]

Covariance:

diag(4,2.56)

Mean:

[3,−4]

Covariance:

1.21I

Mean:

[7.5, 7.5]

Covariance:

1I

698.514± 78.958 674.913± 62.764 100%

Other

distribution
Logistic

Location:

[−1, 5]

Scale:

[1.69.1.21]

Location:

[3,−4]

Scale:

[1, 1]

632.648± 81.131 624.001± 109.837 100%

Table B.2: Results: K -means clustering in the unsupervised stage.

Subsection B.2 Gasoline cartels

In this section, we explore different combinations of our approach using the gasoline cartel

data considered in Section 3.5. In Subsection B.2.1 we evaluate the performance of the K -

means algorithm in clustering the gasoline cartels. It allows us to see how well it separates

the data between collusion and competitive observations. Also, based on the PI outcomes,

we compare its performance with the GMCM algorithm. In Subsection B.2.2, we compare

the predictive power of different combinations of our data-driven approach. It is an impor-

tant step since our goal is to increase competition authorities’ capacity to resolve prediction

policy problems. To reach that aim, we use the ROC (Receiver Operating Characteristic)

curve analysis to assess the true positive and false positive rates.

B.2.1 K -means vs GMCM clustering in the unsupervised stage

Based on the Silhouette score, where values close to 1 indicates a well-clustered data, Figure

B.1 shows that 2 is the optimal number of clusters in all four gasoline cartel cases.
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(d) São Lúıs

Figure B.1: Silhouette score to set the optimal number of clusters in the K -means analysis.

Figure B.2 illustrates the observations correctly identified as collusion and competitive

and the number of false negative and false positive for each city analyzed. Table B.3

presents the outputs generated by the K -means clustering in each city evaluated. The

K -means outperforms the GMCM in the clustering analysis of the Belo Horizonte gasoline

cartel. However, considering the other cities, the K -means overall average accuracy is 72%,

while the GMCM achieved 80.25%.
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(c) Caxias do Sul
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(d) São Lúıs

Figure B.2: K -means clustering based on the dynamics of PriceSd and CV.

Table B.4 presents the PI considering the all possible combinations of the algorithms

employed in both the unsupervised and supervised stage. In Belo Horizonte and Caxias do

Sul, we see more relevance to the screen PriceSd. It holds for both the combinations using

the K -means and GMCM with logit and QDA models.

In Brasilia and Sao Luis, we can observe similar outcomes for both K -means and GMCM

combined with the logit algorithm. In contrast, although with different magnitudes, the

combination of both the GMCM and K -means with QDA attributes more homogeneous

weights to the screens.
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Panel (A) Belo Horizonte Panel (B) Braśılia
Precision Recall f1-score Precision Recall f1-score

non-cartel 0.90 0.64 0.75 non-cartel 0.92 0.80 0.85
cartel 0.67 0.91 0.77 cartel 0.89 0.96 0.92

accuracy 0.76 accuracy 0.90

Panel (C) Caxias do Sul Panel (D) São Lúıs
Precision Recall f1-score Precision Recall f1-score

non-cartel 0.99 0.33 0.50 non-cartel 0.72 0.53 0.61
cartel 0.46 0.99 0.63 cartel 0.60 0.77 0.67

accuracy 0.57 accuracy 0.65

Table B.3: The performance of the K -means in each evaluated city

K -means Clustering GMCM Clustering

Logit QDA Logit QDA

Belo Horizonte
PriceSd 0.4805 ± 0.0485 0.4725 ± 0.0499 0.3973 ± 0.0178 0.4 ± 0.0301
CV 0.0040 ± 0.0066 -0.004 ± 0.0137 0.0913 ± 0.0234 0.0711 ± 0.0201
Brasilia
PriceSd 0.4830 ± 0.0430 0.3184 ± 0.0459 0.5782 ± 0.0344 0.4027 ± 0.0315
CV 0.0068 ± 0.0086 0.2966 ± 0.0460 0.0599 ± 0.0264 0.4014 ± 0.0375
Caxias do Sul
PriceSd 0.3370 ± 0.0485 0.2603 ± 0.0513 0.4836 ± 0.0320 0.3918 ± 0.0419
CV 0.0096 ± 0.0140 0.1247 ± 0.0340 0.1452 ± 0.0329 0.1671 ± 0.0834
Sao Luis
PriceSd 0.4252 ± 0.0518 0.3496 ± 0.0716 0.5570 ± 0.0645 0.4978 ± 0.0525
CV 0.0178 ± 0.0119 0.2770 ± 0.0753 0.3274 ± 0.0433 0.4963 ± 0.0629

Table B.4: Permutation Importance based on the K -means and GMCM algorithms

B.2.2 Predictive analysis

We offer in this section an extra validation step based on the model’s predictive power.

Using the data from gasoline cartels, we do the following forecasting exercise. First, we train

the supervised models (QDA and logit) based on the labels generated by the unsupervised

models (K -means and GMCM). Then, we test their performance against the original/actual

labels. To this end, we use the ROC curve analysis and the area under the curve (AUC)

metrics (Bradley 1997). In summary, the AUC captures the correspondence between the

rates of true positives and false positives. Perfect predictions result in an AUC = 1, and

an AUC ≤ 0.5 indicate low-quality predictions.
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(d) São Lúıs

Figure B.3: ROC Curve and AUC for different configurations of the data-driven approach.

Figure B.3 illustrates the rates of correct predictions for the positive class – collusion, on

the vertical axis – versus the fraction of errors for the negative class – competition, on the

horizontal axis. In the best scenario, the rates of correct positive and incorrect negative

class predictions would be null, respectively. Then, a perfect prediction would occupy

the coordinate (0,1) in the upper-left corner of the graph. Furthermore, the ROC curve

captures the true and false positive rates for different classification threshold probabilities.

Poor quality predictions form a diagonal (dashed in black) line from coordinate (0,0) to

coordinate (1,1). Along this dashed line, the algorithms predict all observations as collusion

on competitive classes. Predictions lying below this dashed line have little or no ability to

help competition authorities distinguish collusion from competitive behavior.

From Figures B.3a – B.3d, we can rank the performance of the different combinations
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by the overall average area under the curve (AUC) criterion as follows: (i) GMCM and

QDA (AUC = 0.94); (ii) K -Means and QDA (AUC = 0.89); (iii) GMCM and logit (AUC

= 0.84); (iv) K-means and logit (AUC = 0.76).

Subsection B.3 Road Maintenance

Table B.5 reports the PI based on the GMCM clustering applied to the road maintenance

dataset. In addition to the differences in magnitudes, the ranking obtained with the logit

model is slightly different from the QDA. Note that the TotalBidst screen has the lowest

relevance for logit, while it is the second most relevant screen for QDA.

Logit QDA
rank rank

TotalFirmst 0.2619 ± 0.0351 (1st) 0.5179 ± 0.0385 (1st)

TotalBidst 0.0455 ± 0.0145 (6th) 0.4836 ± 0.0373 (2nd)

AverageBidst 0.1657 ± 0.0385 (2nd) 0.3806 ± 0.0267 (3rd)

Skewness(bt) 0.1403 ± 0.0174 (3rd) 0.2373 ± 0.0322 (4th)

CVt 0.1552 ± 0.0319 (4th) 0.2343 ± 0.0322 (5th)

TotalSingleBidst 0.0799 ± 0.0138 (5th) 0.1299 ± 0.0296 (6th)

Table B.5: Permutation Importance based on the GMCM clustering

In addition, we provide analysis based on the K -means (unsupervised stage) and the

logit and QDA classifiers (supervised stage). Figure B.4 shows that 2 is the optimal number

of clusters in the K -means applied to the road maintenance database. Table B.6 provides

information regarding the behavior of each screen in the two distinct groups of public

procurements in the road maintenance sector identified by the K -means clustering. Notice

that cluster 0 concentrates 842 tenders, representing almost 95% of the total. We can

observe differences in the (average) behavior of each screen. However, it does not reveal a

pattern we may unambiguously associate with collusive behavior.
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Figure B.4: Silhouette Score to set the optmial number of clusters in the K -means analysis

Mean Std. Dev. Min Max Mean Sdt. Dev. Min Max

cluster 0 (842 obs) cluster 1 (49 obs)
TotalFirmst 18.92 9.16 4 48 TotalFirmst 79.01 33.89 32 156
TotalBidst 133.30 87.45 4 590 TotalBidst 638 361.03 162 1524
AverageBidst 7.36 4.21 1 36.1 AverageBidst 9.26 7.45 2.13 34.89
TotalSingleBidst 7.24 4.24 0 27 TotalSingleBidst 24.02 13.01 4 60
CVt 0.38 0.61 0.001 4.80 CV 0.31 0.28 0.051 1.12
Skewness(bt) 0.87 1.57 -3.42 5.29 Skewness(bt) 1.28 1.91 -0.95 6.28

Table B.6: Descriptive Statistics by each cluster generated by the K -means.

In Table B.7, we report the Mann-Whitney (MW) and the Kolmogorov-Smirnov (KS)

test for the screens used in the road maintenance dataset. The MW test informs us whether

two independent samples are derived from the same distribution (population), i.e., it tests

the hypothesis of a zero-median difference between two independently sampled populations.

The KS is a nonparametric test to compare the probability distribution of two samples. The

null hypothesis in both MW and KS assumes samples derived from the same distribution.

The differences observed between the two clusters obtained via the K -means algorithm are

statistically significant at the 1% level for the following screens: TotalFirmst, TotalBidst,

and TotalSingleBidst. CVt and Skewness(bt) are only significant at 5% for the Kolmogorov-

Smirnov test. The screen AverageBidst does not behave (statistically) differently in the

two clusters.
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z-statistic p-value MW Ksa p-value KS

TotalFirmst -11.66 < 0.0001 0.93 < 0.0001
TotalBidst -11.14 < 0.0001 0.84 < 0.0001
AverageBidst -1.39 0.1652 0.13 0.398
TotalSingleBidst -9.69 < 0.0001 0.74 < 0.0001
CVt -1.23 0.2178 0.22 0.025
Skewnesst -1.72 0.0857 0.21 0.029

Table B.7: MW and KS tests for the screens in each cluster generated by the K -means.

Finally, Table B.8 reports the PI based on the K -means clustering applied to the road

maintenance database. We observe subtle differences in the ordering and magnitude ob-

tained by the PI. However, qualitatively, the results obtained by logit and QDA in the

supervised stage show a satisfactory degree of agreement when combined with the K-means

in the unsupervised stage.

Logit QDA
rank rank

TotalFirmst 0.0799 ± 0.0112 (1st) 0.2396 ± 0.0166 (1st)

TotalBidst 0.0119 ± 0.0099 (3th) 0.1888 ± 0.0154 (2nd)

TotalSingleBidsT 0.0172 ± 0.0101 (2nd) 0.0799 ± 0.0180 (3rd)

AverageBidst 0.0007 ± 0.0030 (4rd) 0.0769 ± 0.0112 (4th)

Skewness(bt) -0.0037 ± 0.0000 (6th) 0.0060 ± 0.0037 (5th)

CVt -0.0015 ± 0.0037 (5th) 0.0045 ± 0.0110 (6th)

Table B.8: Permutation Importance based on the K -means clustering

Compared to the results presented in Table B.5, there is a noticeable difference in the

magnitude and order of the screens. It may be a consequence of the distinct nature of

clustering algorithms. The GMCM supports a wide range of fine adjustments to the model

parameters (covariance format, for example). In turn, K -means imposes more restrictions,

assuming an equal spherical covariance matrix for the partition of each cluster.
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